
Learning from the Present —

Things that IP got right

and ATM got wrong

Van Jacobson
Lawrence Berkeley Laboratory

Berkeley, CA 94720

USENIX High-speed Networking Symposium
Berkeley, CA

1–3 August 1994

Note: I am not going to talk about ATM as

an interconnection technology.

H

H

H

H

R

the Internet

R H

ATM

vj–ip&atm–2

In particular, this is a perfectly reasonable

picture:

the Internet
SwitchRouter

H

H

H

Switch

H

H

vj–ip&atm–3

Things that ATM got right

vj–ip&atm–4



� ATM is better (cheaper, more

flexible) than TDM for trunking.

� The ‘bandwidth independence’

of ATM is useful for host/network

interfaces.

vj–ip&atm–5

Hierarchy of networking problems:

� Going fast

� Getting big

� Crossing borders

(Difficulty increases going down. First item

is hard; last is within � of impossible.)

Designers should be careful that solutions

at one level don’t make problems at next

level harder.

vj–ip&atm–6

Getting big – traffic scaling

ATM ‘call’ (virtual circuit) model is a poor match to
everything we know about data traffic.

VCs work when the call lifetime is long compared to
the call setup time.

All Internet wide-area traffic studies have found that
average long-haul connection transfers average
2–5KB (Paxson93, Danzig92, Klaffy93).

For a 1 Gbit transcontinental (120ms RTT) pipe, this
means call lifetime should be 25 � sec. but gets
inflated by factor of 5000 by setup time.

This generates completely useless state for 4000
connections/trunk and requires at least one call
completion every 25 � sec. (40K/sec.).

vj–ip&atm–7

Getting big – multicast

There’s one case where current Internet

traffic is long-lived compared to RTT:

MBone voice & video.

Unfortunately, Internet voice & video

success deeply tied to IP multicast model.

ATM doesn’t (and can’t) support this model.

vj–ip&atm–8



Getting big – multicast (cont.)

IP multicast model:

� Receivers announce interest.

� Senders just send.

� Network takes care of delivering data from
senders to all interested receivers.

If everyone both sends & receives, this scales
� � � � 
 � �

. It works because multicast address has
global meaning and provides network-level identity
for session.

ATM multicast model:

� Sender knows every receiver, creates a call to
one then ‘adds’ others to call.

If everyone sends & receives, this scales
� � � � �

.

vj–ip&atm–9

Getting big – reliability

ATM VC state is spread out over all switches in the
path (VPI/VCI in cell is per-hop).

If hop’s reliability is � , failure probability for � hop
path is � � � � . E.g., for typical router reliabilities of

� 	 �
�

(99.99% uptime), path failure probability for
typical 22 hop Internet path is 1%.

For moderately well connected IP topology, path
failure probability goes exponentially to zero with
number of hops, independent of per-hop reliability.

Short summary:


 ATM fails if anything fails.


 IP fails if everything fails.

vj–ip&atm–10

Getting big – summary

Central problem is that an ATM core

element, the ‘call’, is not a low-level building

block — it’s a very high-level abstraction. It

is the wrong abstraction for a lot of

problems and has poor scaling properties.

IP was built on a slight idealization of

packet forwarding behavior that is intrinsic

part of routing. It is very low level. I.e., if

you can’t build a solution from this building

block, you can’t build a solution.

vj–ip&atm–11

Crossing boundaries – making promises

Part of organization’s willingness to carry transit
traffic (erase boundary) is based on what kind of
obligation they’re committing to.

IP router’s promise:

� I’ll try to send packet towards destination.

ATM switch’s promise:

� I’ll send cell out port that was in direction of
destination at time call was set up.

� I won’t crash.

� I’ll remember your call until you tell me to forget.

vj–ip&atm–12



Crossing boundaries – traffic control

One reason for having boundary is desire

to control what & how much crosses it.

Usually this involves some sort of feedback

loop:

A B

data

control

vj–ip&atm–13

Crossing boundaries – traffic control
(cont.)

There’s a tendency in VC protocols to

(incorrectly) generalize the simple case into

hop-by-hop flow control:

A B C

As Routh pointed out more than a century

ago, the correct (and far more stable)

generalization is end-to-end flow control:

A B C

vj–ip&atm–14

Crossing boundaries – traffic control
(cont.)

One (of many) problems with hop-by-hop

flow control is that it converts a traffic

problem anywhere into a traffic problem

everywhere.

Say there’s a source A sending to dest D at

the capacity of links A–C and C–D:

B

DC

A

vj–ip&atm–15

Crossing boundaries – traffic control (cont.)

If a periodic source from B to D starts up, the queue
at C must increase until the flow control is activated
(since there’s no excess capacity on the C–D link to
dissipate the queue). The flow control will eventually
gate A at the same frequency as the B traffic:

B

DC

A

Cross traffic also inherits this pattern and, even if B
shifts from periodic to steady, the pattern will persist.

vj–ip&atm–16



Crossing boundaries – summary

There is a core philosophical difference between
ATM and IP:

1. ATM: Everything’s a boundary (UNI/NNI
separation, service & provider ids in Q.931,
etc.). By careful engineering and complex
negotiation, it may be possible to send data
across a boundary.

2. IP: Nothing’s a boundary. By careful
engineering and complex negotiation, it may be
possible to not send data across a boundary.

If the object of this exercise is to communicate, (2)
works much better than (1).

vj–ip&atm–17


